

Unlocking the potential of municipal solid waste compost for urban and peri-urban agriculture: Nutrient recirculation in metropolitan areas

Juan David Arosemena¹, Susana Toboso-Chavero¹, Gara Villalba^{1,2}

¹ Sostenipra Research Group, Institute of Environmental Science and Technology, Z Building, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain. ² Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain

#CILCA2023 20 YEARS - Solutions to regional challenges, supporting global sustainability trends with a life-cycle approach

1. What is the of potential of OMSW compost to supply **NPK demanded by UA?** 2. And what are the environmental benefits and tradeoffs of replacing mineral fertilizer with OMSW compost while minimizing waste? #CILCA2023 20 YEARS - Solutions to regional challenges, supporting global sustainability trends with a life-cycle approach Introduction - Research questions - Methods - Results - Conclusions viña del Mar, Chile **Case study:** Metropolitan Area of Barcelona (AMB) 3.2 million inhabitants AMB limits (5,093 inhabitants/km²) Llobregat river UA in AMB 5,568 ha of UA (2016) 68,800 tonnes of fresh produce a year (2016) (Mendoza Beltran et al. 2022)

#CILCA2023 20 YEARS - Solutions to regional challenges, supporting global sustainability trends with a life-cycle approach

#CILCA2023 20 YEARS - Solutions to regional challenges, supporting global sustainability trends with a life-cycle approach

6

Introduction - Research questions - Methods - Results - Conclusions

Nutrient supply per scenario					
Scenario	Nutrient	NPK demand (tonnes)	Supplied by		NPK supply
			OMSW compost	Mineral fertilizer	potential from
			(tonnes)	(tonnes)	compost
Scenario 1	Ν	769	-	769	-
"only mineral NPK"	Р	113	-	113	-
	К	592	-	592	-
	Total NPK	1,475	-	1,475	-
Scenario 2	Ν	769	32	737	4%
"compost NPK 2016 + mineral NPK"	Р	113	44	70	38%
	К	592	37	555	6%
	Total NPK	1,475	113	1,361	8%
Scenario 3	N	769	95	675	12%
"compost NPK 2025 + mineral NPK"	Р	113	113	1	99%
	К	592	99	493	17%
	Total NPK	1,475	306	1,168	21%

#CILCA2023 20 YEARS - Solutions to regional challenges, supporting global sustainability trends with a life-cycle approach

Introduction - Research questions - Methods - Results - Conclusions

Viña del Mar, Chile

2. What are the environmental benefits and trade-offs of replacing mineral fertilizer with OMSW compost while minimizing waste?

#CILCA2023 20 YEARS - Solutions to regional challenges, supporting global sustainability trends with a life-cycle approach

Introduction - Research questions - Methods - Results - Conclusions

Viña del Mar, Chile

PROS:

- 1. OMSW compost have (some) potential to supply N, P, and K demanded at UA scale
- 2. Composting of OMSW provides benefits in GW, FE and ET
- 3. Useful to inform about benefits of nutrient circularity considering entire life cycle in the city
- 4. No, we don't need more compost. We need to take advantage of the direct and indirect benefits of closing the loop between 2 systems (MSW + UA)

Introduction - Research questions - Methods - Results - Conclusions

15

CONS:

- OMSW compost is not the best alternative to replace mineral N fertilizer 1.
- Composting in open facilities and refuse is still impactful. Aside from 2. prevention, gaseous treatment and selective collection is critical
- 3. Practice is not easy. Barriers exist preventing nutrient circularity in UA, disconnection between systems

#CILCA2023 20 YEARS - Solutions to regional challenges, supporting global sustainability trends with a life-cycle approach Introduction - Research questions - Methods - Results - Conclusions viña del Mar, Chile Thank you! JuanDavid.Arosemena@uab.cat PhD student URBAG https://urbag.eu/ B Universitat Autònoma etitut de Ciènci getation de Barcelona 16 #CILCA2023 20 YEARS - Solutions to regional challenges, supporting global sustainability trends with a life-cycle approach